Homework for Chapter 6: Digital Logic Circuits

1. Convert to binary, and to decimal:
(a) 757.25_{10}
(b) 10111011.1_{2}
2. Add, subtract, and multiply in binary:
(a) 1111 and 1001
(b) 1010101 and 111011
3. Give the circuit symbol and truth table for an AND gate, an OR gate, an inverter, a NAND gate, a NOR gate, and an XOR gate. Assume two inputs for each gate (except the inverter).
4. Prove the following theorems algebraically:
(a) $X \cdot(\bar{X}+Y)=X \cdot Y$
(b) $X \cdot Y+X \cdot \bar{Y}=X$
(c) $(A+B) \cdot(A+\bar{B})=A$
5. Illustrate the circuit diagrams for both sides of the following theorem; then, make the truth tables. And verify the theorem.

$$
(X+\bar{Y}) \cdot Y=X \cdot Y
$$

6. Write a Boolean expression for the output of the logic circuit illustrated bellow. (This is Problem 6.6 (c) in the textbook.)

7. By using DeMorgan's theorem, verify the following equation:

$$
(\overline{\bar{A}}+B) \cdot \overline{\bar{C}}=A \cdot \bar{B}+C
$$

8. Simplify the following expression with Karnaugh Map.

$$
\begin{aligned}
Z= & A \cdot B \cdot \bar{C} \cdot \bar{D}+\bar{A} \cdot \bar{B} \cdot \bar{C} \cdot D+A \cdot \bar{B} \cdot \bar{C} \cdot D+\bar{A} \cdot \bar{B} \cdot C \cdot D+\bar{A} \cdot B \cdot C \cdot D+ \\
& A \cdot B \cdot C \cdot D+\bar{A} \cdot \bar{B} \cdot C \cdot \bar{D}+\bar{A} \cdot B \cdot C \cdot \bar{D}
\end{aligned}
$$

