Capacitor

Your name _____ Instructor's sign _____ Go at https://phet.colorado.edu/en/simulation/capacitor-lab and download the software.

1. <u>Basic property</u>

- In the "Meter" category in the right side of display, check "Capacitance" to see the values.
- Click on the arrows to change the separation and the plate area.
- Fill out the table for each capacitance. The raw is separation; and column is area.

	100 mm ²	150 mm ²	200 mm²	250 mm ²	300 mm²	350 mm²	400 mm²
5.0 mm							
6.0 mm							
7.0 mm							
8.0 mm							
9.0 mm							
10.0 mm							

• <u>**Question 1**</u>: In which case can you obtain the largest and smallest capacitances?

2. <u>Dielectrics</u>

- Click the Dielectric tab.
- Check "Capacitance" in the Meter category.
- Fix separation as 5.0 mm, plate area as 400.0 mm², and dielectric constant as 5.
- Insert the dielectric one fourth of the side capacitor, and then record the capacitance.

• Repeat the above with inserting a half, three fourths, and entire dielectric.

	One fourth of	A half of	Three fourths of	One entire
	dielectrics inserted	dielectrics inserted	dielectrics inserted	dielectrics inserted
The capacitance				
(F)				

• <u>Question 2</u>: How do you describe the relationship between the amount of dielectrics inserted and the capacitance of the capacitor?

3. <u>Multiple capacitors</u>

- Click "Multiple Capacitors" tab.
- Check "2 in series" in the "Circuits" category.
- C1 and C2 must be different capacitances.

- C₁ _____ (); C₂ _____ () • Show the calculation to obtain the equivalent capacitance by using the formula. $\frac{1}{C_{eq}} = \frac{1}{C_1} + \frac{1}{C_2}$
 - C_{eq} by calculation = _____()
 - Check "Total Capacitance" in the "Meters" category.
 C_{eq} from the simulation = _____ ()
- <u>Question 3</u>: Did you obtain the same value for the equivalent capacitance?
 - Check "2 in parallel" in the "Circuits" category and choose C₁ and C₂.
 - Show the calculation to obtain the equivalent capacitance by using the formula.
- $C_{\rm eq} = C_1 + C_2$

 C_{eq} by calculation = _____ ()

- Check "Total Capacitance" in the "Meters" category.
 C_{eq} from the simulation = _____ ()
- <u>Question 4</u>: Did you obtain the same value for the equivalent capacitance?

For the lab report

① Write the introduction. ② Copy and paste the tables you filled out. ③ Write the discussions and conclusion including the answers of the questions above.