Name	TA	
Partners		
Section#	_Date	
1. The Circular Constant, π		
Object 1:		
Diameter D(cm)	Circumference <i>l</i>	_(cm)
$\pi = \ell/D =$		
Object 2:		
Diameter D(cm)	Circumference <i>l</i>	_(cm)
$\pi = \ell/D =$		
 ◊Questions ◊ Did you get a close number for π even if the size of objects is different? Which is the closest value as π=3.1415926535897932384626? 377/120, √10, 355/113, 25/8, 63(17+15√5)/25(7+15√5) *These were used as π many years ago for the approximate expressions. 		
2. The Galilei's Experiment in the Tower of Pisa		
• <u>Preparation</u>		
The weights of two objects:		
Wood ball	a metal object	
• <u>The imitation of his experiment</u>		
Did you see those objects reach ground simultaneously even each has different mass?		
<u>Confirmation with photo gates</u>		

Historically Famous Experiments

Wood Ball Metal Falling Time (s) Image: Constraint of the second second

Did you make sure that those falling times are almost the same?

Hiro Shimoyama

3. Specific Gravity with Archimedes' Principle

The name of object: _______ (g) The initial mass of beaker and water, W_0 =_______ (g) The mass of beaker + water + object, W_1 =______ (g) The mass of beaker + water + the water equal to the volume of object, W_2 =______ (g) Specific Gravity of the Object, d=(W_1 - W_0)/(W_2 - W_0)=______ (g/cm³) \diamond General Discussion \diamond

- Do you have any idea to obtain more accurate values for these experiments?
- If you have some impression on this lab, please write down on your report.

Lab Procedure for Historically Famous Experiments

1. The Circular Constant, π

- a. Take enough string or wire to measure the circumference of an object.
- b. After you obtain the circumference with a string, measure the length with a meter stick or other scalar.
- c. Measure the diameter with a caliper or a meter stick.
- d. Calculate π with the circumference, ℓ and the diameter, D; $\pi = \ell/D$.
- e. Repeat the above for the other objects.

2. The Galilei's Experiment in the Tower of Pisa

- a. Weigh two objects with a balance.
- b. Someone drops those at the same position simultaneously. And other sees if they will reach ground simultaneously.
- c. Make sure this experiment with photo gates. And you can see if both objects take almost the same time to fall.

3. Specific Gravity with Archimedes' Principle

- a. Write down the name of object.
- b. Weigh the mass of beaker and water, W_0 . The amount of water should be between 700 m ℓ and 800 m ℓ .
- c. Put the object into the beaker with water, and weigh the total mass, W_1 .
- d. Immerse the object in water with your fingers or a stick; then read the weight, W_2 .
- e. Calculate the specific gravity, $d=(W_1-W_0)/(W_2-W_0)$, and write down the density, too.

4. Lab Report

Please answer the questions on the data sheet.