Hiro Shimoyama

Kinematics and Vectors

1. Kinematics

Turn on the air pump and level the air track so that the glider stays one place.

• Experiment 1 – Measuring Velocities

Use "Time in photo gate"; make a constant velocity to go through two gates as follows.

d (distance between photo gates) = _____ (m)

	Photo Gate 1 (ini. velocity)	Photo Gate 2 (fin. velocity)	Stopwatch (t)	Velocity d/t
1				
2				
3				

Questions:

▲ Did you make constant velocities? (Are the first and second columns close?)

▲ Are the velocities measured by photo gates close to the velocities measured by stopwatch?

Hiro Shimoyama

• Experiment 2 – Measuring Acceleration

Conceptual Discussion:

What is acceleration? Explain it in your own words.

Use "Time in photo gate"; make the initial position as close to the first photo gate as possible.

Pull with a constant acceleration.

d (distance between photo gates) = _____ (m)

	Photo Gate 1 (ini. velocity)	Photo Gate 2 (fin. velocity)	Stopwatch (t)	Acceleration 1 lini. vel. – fin. vel.l/t	Acceleration 2 $2d/t^2$
1					
2					
3					

Questions:

▲ Did you have similar values in last two columns?

Explain velocity and acceleration in your own words from the above experiments.

Hiro Shimoyama

2. Vector Addition

Make a circle with a compass, and label the angles by using a protractor. After that, using three scales, you make a balanced state as follows.

	Mass	Angle	$Mass_{x}$ (= Mass×cos θ)	$Mass_y \\ (= Mass \times sin\theta)$
Force 1		$\theta_1 =$		
Force 2		$\theta_2 =$		
Force 3		$\theta_3 =$		
Sum of x	- and y- components of			

Do the force components add up to zero?

What is the meaning of vector addition above?