Linear Least Squares Fit and Error of Fitting

- Least squares fit

We assume a linear least squares line as follows:

$$
\begin{equation*}
y=a+b x \tag{Eq0}
\end{equation*}
$$

The quantitative procedure to find the least squares is to minimize the deviation between the expected line and data points. Therefore, we have

$$
\begin{equation*}
Q=\sum_{i=1}^{m} w_{i}\left\{y_{i}-\left(a+b x_{i}\right)\right\}^{2} \tag{Eq1}
\end{equation*}
$$

where w_{i} is weight $\left(=\sum_{i} / / \sigma_{i}\right)$. Here, we use 1 for $w_{i} . y_{i}$ and x_{i} are the data set. The following two equations will be the necessary condition for Q to be a minimum:

$$
\begin{equation*}
\frac{\partial Q}{\partial a}=0, \quad \frac{\partial Q}{\partial b}=0 \tag{Eq2}
\end{equation*}
$$

We can calculate (Eq2) with (Eq1), which can be cast in the form of a single matrix equation:

$$
\begin{gather*}
\mathbf{M P}=\mathbf{Y} \tag{Eq3}\\
\text { where } \mathbf{M}=\left[\begin{array}{cc}
\sum_{i=1}^{\mathrm{m}} 1 & \sum_{i=1}^{m} x_{i} \\
\sum_{i=1}^{m} x_{i} & \sum_{i=1}^{m} x_{i}^{2}
\end{array}\right], \mathbf{P}=\left[\begin{array}{l}
a \\
b
\end{array}\right], \text { and } \mathbf{Y}=\left[\begin{array}{c}
\sum_{i=1}^{m} y_{i} \\
\sum_{i=1}^{m} x_{i} y_{i}
\end{array}\right] . \text { To solve for } \mathbf{P} \text {, we use the }
\end{gather*}
$$

inversion of the matrix \mathbf{M}. Thus,

$$
\begin{equation*}
\mathbf{P}=\mathbf{M}^{-1} \mathbf{M} \mathbf{P}=\mathbf{M}^{-1} \mathbf{P} \tag{Eq4}
\end{equation*}
$$

We therefore obtain a and b for the least squares fit:

$$
\begin{align*}
& a=\frac{1}{\Delta}\left\{\left(\sum_{i=1}^{m} x_{i}^{2}\right)\left(\sum_{i=1}^{m} y_{i}\right)-\left(\sum_{i=1}^{m} x_{i}\right)\left(\sum_{i=1}^{m} x_{i} y_{i}\right)\right\} \tag{Eq5}\\
& b=\frac{1}{\Delta}\left\{\left(\sum_{i=1}^{m} 1\right)\left(\sum_{i=1}^{m} x_{i} y_{i}\right)-\left(\sum_{i=1}^{m} x_{i}\right)\left(\sum_{i=1}^{m} y_{i}\right)\right\} \tag{Eq6}
\end{align*}
$$

where $\Delta=\left(\sum_{i=1}^{m} 1\right)\left(\sum_{i=1}^{m} x_{i}^{2}\right)-\left(\sum_{i=1}^{m} x_{i}\right)^{2}$. This is the systematic way to obtain (Eq0).

- Error of fitting (χ-square)

The error analysis of this calculation will be given as follows:

$$
\begin{equation*}
\chi^{2}=\frac{1}{m-n-1} \sum_{i=1}^{m}\left\{y_{i}-\left(a+b x_{i}\right)\right\}^{2} \tag{Eq7}
\end{equation*}
$$

where n is the number of parameters (only a and b here). This is an analogy from the method of standard deviation. If you have a good fit, χ^{2} will approach 1 in the limit of large m. The values y, a, and b have deviations due to the error, so each variant will be given as follows:

$$
\begin{align*}
& \sigma_{y}^{2}=\frac{1}{m-3} \sum_{i=1}^{m}\left\{y_{i}-a-b x_{i}\right\}^{2} \tag{Eq8}\\
& \sigma_{a}^{2}=\frac{\sigma_{y}^{2}}{\Delta} \sum_{i=1}^{m} x_{i}^{2} \tag{Eq9}\\
& \sigma_{b}^{2}=\frac{m \sigma_{y}^{2}}{\Delta} \tag{Eq10}
\end{align*}
$$

where $\Delta=\left(\sum_{i=1}^{m} 1\right)\left(\sum_{i=1}^{m} x_{i}^{2}\right)-\left(\sum_{i=1}^{m} x_{i}\right)^{2}$.

