Projectile Motion

Name	Instructor's signature
	6
A	_

A projectile motion is a two dimensional kinematic motion. The motion is described with *x*- and *y*-directions separately. The initial velocity is in general angled and its *x*- and *y*- components have to be used to obtain the related values, such as the range and height. For this simulation, go at http://hirophysics.com/Anime/projectile.html.

1. Fixed initial velocity

Initial velocity $v_0 = 75.0$ () \Leftarrow SI unit

Angle, (degrees)	20	40	45	50	55	60	80	90
$v_{x0} = v_o \cos \theta$								
$v_{y0} = v_o \sin \theta$								
Range								
(m)								
(from simulation)								
Max. height								
(m)								
(from simulation)								
\Downarrow Calculate the time with v_{xo} and the range. Check with your instructor.								
Time for flight								

Question 1: Plot a graph, R vs. θ .

 Question 2: Which angle makes the maximum range?

 Question 3: Which angle makes the maximum height?

 Question 4: Which angle makes the maximum flight time?

2. Fixed angle

Angle	θ	= 45	(degrees)
-------	----------	-------------	-----------

Initial velocity,								
$V_0 (m/s)$	30	40	50	60	70	80	90	100
$v_{x0} = v_o \cos \theta$								
$v_{y0} = v_o \sin \theta$								
Range								
(m)								
(from simulation)								
Max. height								
(m)								
(from simulation)								
\Downarrow Calculate the time with v_{xo} and the range. Check with your instructor.								
Time for flight								

Question 5: Describe the relationships, v_0 vs. range, v_0 vs. maximum height, and v_0 vs. flight time.

For the lab write up

- Write the introduction, conclusions and discussions.
- Refer to the questions above.
- Attach this sheet as the data.