Excel Spreadsheet and Simulation

Name	ID
Partners	
Date	Section

1. Basic Excel Manipulations:

• Type numbers from 1 to 100, and obtain the sum, average, and standard deviation with the built-in functions.

1 H		2 M
	A3	-
	A	В
1		
2		
3	1	
4	2	
5		
6		

96

97

98 99

100

...+

98

99

100

101 102

103

104 105

100

- ① Type 1 and 2; then, select as shown.
- ^② Put the cursor on the small black square dot.
- ③ Click it and drag down until you get 100.

- ④ Click another cell, then type equal sign, "=."
- ⑤ After the sign, keep typing "SUM(a3:a102)", then press enter.
- © "(a3:a102)" means the cell numbers that you calculate.

⑦ Do the same thing for the average and standard deviation. The commands are "AVERAGE" and "STDEV", respectively.

2. Excel Built-In Math Functions

• Apply the methods above, and plot sin, cos, log₁₀, log_e, and exp functions. The example is shown as follows. (Note: The commands of log₁₀ and log_e are "log" and "ln", respectively.)

	NJZ V /×						
	A	В	С	D	E	F	
1							
2	х	sin(x)	cos(x)	log(x)	ln(x)	exp(x)	
3	0	0	1	#NUM!	#NUM!	1	
4	0.1	0.099833	0.995004	-1	-2.30259	1.105171	
5	0.2	0.198669	0.980067	-0.69897	-1.60944	1.221403	
6	0.3	0.29552	0.955336	-0.52288	-1.20397	1.349859	
7	0.4	0.389418	0.921061	-0.39794	-0.91629	1.491825	
8	0.5	0.479426	0.877583	-0.30103	-0.69315	1.648721	
9	0.6	0.564642	0.825336	-0.22185	-0.51083	1.822119	
10	0.7	0.644218	0.764842	-0.1549	-0.35667	2.013753	
11	0.8	0.717356	0.696707	-0.09691	-0.22314	2.225541	
12	0.9	0.783327	0.62161	-0.04576	-0.10536	2.459603	
13	1	0.841471	0.540302	0	0	2.718282	
14	1.1	0.891207	0.453596	0.041393	0.09531	3.004166	
15	1.2	0.932039	0.362358	0.079181	0.182322	3.320117	
16	1.3	0.963558	0.267499	0.113943	0.262364	3.669297	
4.7		0.00545	0.400007	0.440400	0.000.470	1.0550	

★ Plot those functions, but you may want to separate trigonometric, logarithmic, and exponential functions since the scales are different.

3. Simulation for Beats

• Make two sinusoidal waves whose amplitudes are equal and frequencies are slightly different. The example is shown below.

★ Hint: If you use a value in certain cell as a constant, you have to clip the "column letter" with \$ sign, such as, "=SIN(\$B\$4*C5)."

4. Fourier Series

• Simulate a triangular wave with Fourier series. The expression is given by following:

$$f(x) \approx \frac{4}{\pi} \cos \frac{2\pi}{\lambda} x + \frac{4}{3^2 \pi} \cos \frac{2\pi}{\lambda} (3x) + \frac{4}{5^2 \pi} \cos \frac{2\pi}{\lambda} (5x) + \dots = \frac{4}{\pi} \sum_{k=1}^{\infty} \frac{\cos \frac{2\pi}{\lambda} (2k-1)x}{(2k-1)^2}$$

Calculate each term, and sum the first two terms and six terms respectively. Then, plot them to compare as shown.

