### **Thin Lenses**

| Name                                                                 | ID      | TA |
|----------------------------------------------------------------------|---------|----|
| Partners                                                             |         |    |
| Date                                                                 | Section |    |
| The object lamp might be hot. Exercise caution while using the lamp. |         |    |

# 1. Finding the focal length of a converging lens:

The uncertainties for the focal length are given by:

 $\Delta = |Max. \text{ focal length} - Min. \text{ focal length}| \div 2.$ 

 $f = [Focal length (max.) + Focal length (min.)] \div 2 \iff$ 

| Object distance $d_o$ | Image distance (max.) $d_i + \Delta'$ | Image distance<br>(min.) $d_i - \Delta'$ | Focal length (max.) | Focal length (min.) | Focal length $f \pm \Delta$ |
|-----------------------|---------------------------------------|------------------------------------------|---------------------|---------------------|-----------------------------|
|                       |                                       |                                          |                     |                     | ±                           |
|                       |                                       |                                          |                     |                     | ±                           |
|                       |                                       |                                          |                     |                     | ±                           |

#### 2. Characteristics of real images formed by a converging lens:

Using a converging lens, measure different object distances that produce real images. In addition, measure the image magnification. (You should use the same unit!)

| Object distance $d_o$ | Image distance $d_i$ | Object height $h_o$ | Image height<br>$h_i$<br>(Multiply by – if the<br>image is inverted.) | $Magnification$ $M = h_i / h_o$ (direct) | $M = -d_i/d_o$ (distance ratio) |
|-----------------------|----------------------|---------------------|-----------------------------------------------------------------------|------------------------------------------|---------------------------------|
|                       |                      |                     |                                                                       |                                          |                                 |
|                       |                      |                     |                                                                       |                                          |                                 |
|                       |                      |                     |                                                                       |                                          |                                 |

#### **3.** Finding the focal length of a diverging lens:

> Only the converging lens first (Make a small image)

Object distance  $d_{o_1}$ : \_\_\_\_\_\_ Image distance  $d_{i_1}$ : \_\_\_\_\_\_

✤ Magnification of the converging lens only

| Direct measurement $\rightarrow M_1 = \frac{\text{Image}}{\text{object}}$ | (If the image is inverted, h <sub>o</sub> will be negative.) |
|---------------------------------------------------------------------------|--------------------------------------------------------------|
| Distance ratio $\rightarrow -d_{i1}/d_{o1}$ :                             |                                                              |
| > After insert a diverging lens                                           |                                                              |
| Lens separation <i>r</i> :                                                | Object distance $d_{o2} = r - d_{i1}$                        |
| Image distance $d_{i2}$ :                                                 | -                                                            |
| Focal length of diverging lens, $f = d_{o2}d_{i2}$                        | $/(d_{o2} + d_{i2})$ :(~-15.0 cm)                            |
| Magnification of the diverging lens                                       |                                                              |
| $M_2 = -d_{i2}/d_{o2}$ :                                                  | (only from the distance ratio)                               |
| ✤The total magnification                                                  |                                                              |
| Direct measurement $\rightarrow M = \frac{\text{Image}}{\text{object}}$   |                                                              |
| Distance ratio $\rightarrow (d_{i1}/d_{o1})(d_{i2}/d_{o2})$ :             |                                                              |

#### **Questions:**

- Does the experimental result of focal lengths for converging lens correspond to the value indicated on the lens within the uncertainty? (1 cm = 10 mm)
- For the second part, are the measurements of magnifications consistent between the direct measurement and the distance ratio?
- Did you get the experimental focal length for the diverging lens close to the indicated one?
- For the third part, is the measurement of magnification consistent? (The direct measurements and distance ratios are supposed to be the same.)

#### Please don't mix up the units. (1 cm = 10 mm)

1. Finding the focal length of a converging lens



- Choose a place to put the converging lens. The provided convex (converging) lens will be inserted between the light source (object) and screen.
- **By moving the screen, focus the image.** The object will be "circles and arrows" provided on the light source.
- You will find a tolerance to focus the image by changing the place of screen slightly. Obtain the minimum and maximum image distances.
- After obtaining the image and object distances, calculate the focal length with the thin lens equation, and the uncertainty.

Thin lens equation:  $\frac{1}{f} = \frac{1}{d_o} + \frac{1}{d_i}$ . Maximum focal length:  $f_{\max} = \frac{d_o \cdot (d_i + \Delta')}{d_o + (d_i + \Delta')}$ , and

Minimum focal length:  $f_{\min} = \frac{d_o \cdot (d_i - \Delta')}{d_o + (d_i - \Delta')}$ .

- Repeat the above two more times.
- 2. <u>Characteristics of real images formed by a converging lens</u>
- Use only the converging lens.
- This time you will choose any location for 3 time measurements. But the purpose is to measure the magnifications of the screened images.
- After focusing the image, measure the diameter of the circle as the object, and the same circle on the screen as the image.

The diameter of the image  $\div$  the diameter of the object is the magnification.

• At the same time, measure the object and image distances, and calculate the ratio.

This result is also the value of the magnification. You will compare this with the above result.

- Repeat this 2 more times, but in different locations.
- 3. Finding the focal length of a diverging lens



- **First focus an image only with the converging (convex) lens.** Write down the object and image distances. Also measure the magnification.
- **Insert the diverging (concave) lens between the convex lens and screen.** The separation between two lenses shouldn't be large. That makes the result inaccurate.
- **By adjusting the screen, focus the image.** You can just follow the data sheet to write down the measurements.
  - To confirm the results, calculate the focal length of the diverging (concave) lens and the total magnification.
- 4. <u>Lab report</u>: For your discussion, please answer the questions on the data sheet.

# References



## • How to use a caliper

• How to find the object height

On the light source, you find circles and arrows.



You can measure either the length of an arrow or the diameter of a circle as follows.

