The algebraic inner product is calculated by multiplying the same components and adding them up. For example, suppose we have following two vectors:

$$
\vec{A}=(a, b) \quad \vec{B}=(c, d)
$$

The result of the inner product is:

$$
\begin{equation*}
\vec{A} \cdot \vec{B}=a c+b d \tag{1}
\end{equation*}
$$

On the other hand, the geometric expression is:

$$
\begin{equation*}
\vec{A} \cdot \vec{B}=|\vec{A}||\vec{B}| \cos \theta \tag{2}
\end{equation*}
$$

The θ is the angle between vectors A and B as shown in the figure.

Now, we find each angle, and its cosine is:

$$
\begin{equation*}
\cos \phi=\frac{c}{\sqrt{c^{2}+d^{2}}} \quad \cos \psi=\frac{a}{\sqrt{a^{2}+b^{2}}} \tag{3}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\phi=\cos ^{-1} \frac{c}{\sqrt{c^{2}+d^{2}}} \quad \psi=\cos ^{-1} \frac{a}{\sqrt{a^{2}+b^{2}}} \tag{4}
\end{equation*}
$$

Since $\theta=\phi-\psi$, we have

$$
\begin{equation*}
\theta=\cos ^{-1} \frac{c}{\sqrt{c^{2}+d^{2}}}-\cos ^{-1} \frac{a}{\sqrt{a^{2}+b^{2}}} \tag{5}
\end{equation*}
$$

The formula of the sum of arccosine is given as

$$
\begin{equation*}
\cos ^{-1} \alpha \pm \cos ^{-1} \beta=\cos ^{-1}\left(\alpha \beta \mp \sqrt{\left(1-\alpha^{2}\right)\left(1-\beta^{2}\right)}\right) \tag{6}
\end{equation*}
$$

Thus, (5) becomes

$$
\begin{equation*}
\theta=\cos ^{-1}\left[\frac{c a}{\sqrt{c^{2}+d^{2}} \sqrt{a^{2}+b^{2}}}+\sqrt{\left(1-\frac{c^{2}}{c^{2}+d^{2}}\right)\left(1-\frac{a^{2}}{a^{2}+b^{2}}\right)}\right] \tag{7}
\end{equation*}
$$

We also know

$$
\begin{equation*}
|\vec{A}|=\sqrt{a^{2}+b^{2}} \quad|\vec{B}|=\sqrt{c^{2}+d^{2}} \tag{8}
\end{equation*}
$$

Then, plug (7) and (8) into (2).

$$
\begin{aligned}
& \vec{A} \cdot \vec{B}=\sqrt{a^{2}+b^{2}} \sqrt{c^{2}+d^{2}} \cos \left[\cos ^{-1}\left[\frac{c a}{\sqrt{c^{2}+d^{2}} \sqrt{a^{2}+b^{2}}}+\sqrt{\left(1-\frac{c^{2}}{c^{2}+d^{2}}\right)\left(1-\frac{a^{2}}{a^{2}+b^{2}}\right)}\right]\right] \\
& =\sqrt{a^{2}+b^{2}} \sqrt{c^{2}+d^{2}}\left[\frac{c a}{\sqrt{c^{2}+d^{2}} \sqrt{a^{2}+b^{2}}}+\sqrt{\left(1-\frac{c^{2}}{c^{2}+d^{2}}\right)\left(1-\frac{a^{2}}{a^{2}+b^{2}}\right)}\right] \\
& =c a+\sqrt{c^{2}+d^{2}} \sqrt{a^{2}+b^{2}} \sqrt{\left(1-\frac{c^{2}}{c^{2}+d^{2}}\right)\left(1-\frac{a^{2}}{a^{2}+b^{2}}\right)} \\
& =c a+\sqrt{\left(c^{2}+d^{2}\right)\left(a^{2}+b^{2}\right)\left(1-\frac{c^{2}}{c^{2}+d^{2}}\right)\left(1-\frac{a^{2}}{a^{2}+b^{2}}\right)} \\
& =c a+\sqrt{\left(c^{2}+d^{2}\right)\left(1-\frac{c^{2}}{c^{2}+d^{2}}\right)\left(a^{2}+b^{2}\right)\left(1-\frac{a^{2}}{a^{2}+b^{2}}\right)} \\
& =c a+\sqrt{\left(c^{2}+d^{2}-c^{2}\right)\left(a^{2}+b^{2}-a^{2}\right)} \\
& =c a+\sqrt{b^{2} d^{2}} \\
& =c a+b d
\end{aligned}
$$

This result is equal to that of (1).

Appendix

Derive the sum of arccosine:

We put
$\alpha=\cos A \quad \beta=\cos B$
Thus,
$A=\cos ^{-1} \alpha \quad B=\cos ^{-1} \beta$

Sum of inside cosine is given as:
$\cos (A \pm B)=\cos A \cos B \mp \sin A \sin B$
(c)

Take arccosine of both hands.

$$
\begin{equation*}
A \pm B=\cos ^{-1}[\cos A \cos B \mp \sin A \sin B] \tag{d}
\end{equation*}
$$

The $\sin \mathrm{A}$ and $\sin \mathrm{B}$ are expressed as

$$
\begin{equation*}
\sin A=\sqrt{1-\cos ^{2} A}=\sqrt{1-\alpha^{2}} \quad \sin B=\sqrt{1-\cos ^{2} B}=\sqrt{1-\beta^{2}} \tag{e}
\end{equation*}
$$

Use (b) and (e) to plug in (d).
$\cos ^{-1} \alpha \pm \cos ^{-1} \beta=\cos ^{-1}\left[\alpha \beta \mp \sqrt{1-\alpha^{2}} \sqrt{1-\beta^{2}}\right]$

