
The fThe fThe fThe format, ormat, ormat, ormat, code, declarationcode, declarationcode, declarationcode, declaration of variables for programming languages of variables for programming languages of variables for programming languages of variables for programming languages

DDDDeclarationeclarationeclarationeclarationssss of the vof the vof the vof the variable typeariable typeariable typeariable typessss for Fortran and C/C++for Fortran and C/C++for Fortran and C/C++for Fortran and C/C++

 FortranFortranFortranFortran C/C++C/C++C/C++C/C++

Short integer integer*2 short

short int

Integer with

single precision

integer

integer*4

int

long

long int

Integer with

double

precision

integer*8

long long int

Real with

single precision

real

real*4

float

Real with

double

precision

real*8

double precision

double

More precise

than double

(quad precision)

real*16

(The numerical expression is 0.q0

and built-in functions are the same

as those of single precision.)

long double

Complex

variables

complex*8 (single)

complex*16 or

double complex (double)

complex*32 (quadruple)

complex

double complex

long double complex

(It needs complex.h.)

One character integer*1

byte

char

String character*n

character(len= 10)

char *

char[]

External

function

external extern

Boolean

variables

logical

e.g. logical b

 b = .true.

bool

(This requires a header file,

stdbool.h.)

FortranFortranFortranFortran input/output input/output input/output input/output format format format formats ands ands ands and its commits commits commits commandsandsandsands

The input/output commands take three arguments, but the third one is usually optional.

For instance:

read(number1,number2)

write(number1,number2)

Number1 specifies where to input/output. Number2 sets up the format of the

input/output. When number1 is 5 for “read” command, it specifies the input from the

keyboard. When number1 is 6 for “write” command, the output will be displayed on the

screen. However, these numbers can be replaced by asterisk, *, for the standard screen

I/O.

For one of the third option is

write(*, fmt = ‘(i5)’, advance = “no”)

This does not go to a new line to output the data. You cannot use * for format option

when using advance = ‘no’. The “fmt = ‘(i5)’” specifies the format of the output, which is

for a 5-digit integer. (The item, “fmt = “, can usually be omitted.)

The following third option specifies the numbered command when the program is

forcibly ended by ctrl+C. This end option is only for the read command. (The key

depends on the operating system. It may be ctrl+D or ctrl+Z.)

do while(.true.)

read(*,*, end = 10)

 enddo

10 write(*,*) “The program is terminated.”

The following code notifies a user after reading 15 data:

do i=1,15

 read(*,*,end=10) a

end do

10 write(*,*) "Reading's done."

Without a do-loop, you can express the data of a vector array:

write(*,*) (x(i), i=1,5)

The data above are placed in a line. The following puts the data in the next line:

write(*,”(f5.3)”,advance=”yes”) (x(i),i=1,5)

The “print” command only gives a screen output. The option of print command is:

print ‘format’, ‘variable’

For example,

print *, i

print “(i5)”, i

print “(i5,i7)”, i, j

print *, “Hello”

print “(‘ The value is ‘, i5)”, i

The format code letters are used in the format option as mentioned above. The code

letter must be corresponded to the type of values. For an integer, i5 creates a 5-digit

space to express or read the data. For a float number, f10.6 means that there is a

10-digit space for the value and 6 digits are kept for the decimal places. If you use the

same format with multiple values, it can be made as 3f10.6, which is for 3 different

variables.

CodeCodeCodeCode DescriptionDescriptionDescriptionDescription ExampleExampleExampleExample

i Integer i5

f Real, floating point f10.6

e Single precision real with

exponential notation

e12.10

d Double precision real with

exponential notation

d26.20

a Character a15

x Space 7x

/ Vertical space /

t Tab t12

l Logical l4

n(‘symbol’) Repeating a symbol 8(‘-‘)

A file can be specified as follows:

open(unit = 8,file = “out.dat”,status = “old”)

Then, either “write” or “read” specifies the unit number of the above open command:

write(8,*) “a = “, a

For an example of reading a file,

open(unit = 7,file = “input.dat”,status = “old”)

read(7,*) a

close(7)

A file is opened, it must be closed with the unit number.

You can make arbitrary output without the open command. For instance,

write(10,*) a

Then, it creates a new file named as fort.10.

The status option in the open command has following choices:

OptionsOptionsOptionsOptions If there is no file,If there is no file,If there is no file,If there is no file, ………… If there is the file, …If there is the file, …If there is the file, …If there is the file, …

Old The error occurs. Open the file.

New Create a new one. The error occurs.

Replace Create a new file. The file is replaced.

Unknown Create a new one. Open or overwrite the file

Scratch Create a new one. The error occurs while

compiling.

For closing file, there are status options as follows. The option, “keep”, is to keep the

generated files and it is the default.

close(unit = 7, status = “keep”)

Then, delete option is to delete the opened file after executing the program.

close(unit = 7, status = “delete”)

The following code lets it skip the first line to read the data:

open(11, file = ' test.dat ')

read (11,'()') ! Skip the line

read (11,*) j

close(11)

C/C++ input/outputC/C++ input/outputC/C++ input/outputC/C++ input/output format format format formats ands ands ands and its commandsits commandsits commandsits commands

C/C++ general

When input and output data on the command prompt (screen), use printf and scanf

commands as follows:

#include<stdio.h>

int main(){

 double f;

 scanf(“%lf”, &f);

 printf(“The ans is %lf n\ ”, f);

}

For the input command (scanf), the address of the variable should be used with &. The

items, n\ and %lf, are an escape sequence and a specifier, respectively, and the others

can be referred to in the tables below.

Format specifiers for CFormat specifiers for CFormat specifiers for CFormat specifiers for C

SpecifierSpecifierSpecifierSpecifier Correspondent typeCorrespondent typeCorrespondent typeCorrespondent type DescriptionDescriptionDescriptionDescription ExampleExampleExampleExample

%c char For one character “%c”

%s char * For a string “%7s”, “%-12s”

%d int For an integer in

decimal

“%5d”, “%-2d”

%u unsigned int

unsigned short

For an unsigned

integer in decimal

“%2u”

%o int

short

unsigned int

unsigned short

For an integer in

octal

"%08o"

%x int

short

unsigned int

unsigned short

For an integer in

hexadecimal

“%08x”

%f float For a real “%8.6f”

%e float For a real with

exponential

“%10.7e”

%g float For a real with an

optimal form

“%g”

%ld long For a double

precision integer in

decimal

“%-12ld”

%lu unsigned long For an unsigned

double precision

integer in decimal

“%08lu”

%lo long

unsigned long

For an unsigned

double precision

“%14lo”

integer in octal

%lx long

unsigned

For an unsigned

double precision

integer in

hexadecimal

“%10lx”

%lf Double For a double

precision real

“%26.20lf”

%Lf Long double For a quadruple

precision real

“%33.32Lf”

%p Pointer For printing a

pointer value

“%p”

Escape sequences of CEscape sequences of CEscape sequences of CEscape sequences of C

Escape sequenceEscape sequenceEscape sequenceEscape sequence RepresentationRepresentationRepresentationRepresentation

a\ Alert (beep sound)

b\ Backspace

f\ Form feed (new page)

n\ Line feed (new line)

r\ Carriage return

t\ Horizontal tab

v\ Vertical tab

\\ Backslash

?\ Question mark

\" Double quotation mark

\' Single quotation mark

0\ Null (string terminator)

xhh\ Hexadecimal bit pattern

ooo\ Octal bit pattern

When reading or storing data in files, the following procedure is required: First, make a

pointer variable by using the FILE struct.

FILE *fp;

Then open a file to input the variable.

fp = fopen(“out.dat”,”w”);

The argument, w, indicates writing. The command, fprintf, stores the data in the

pointer file.

fprintf(fp, ”A = %lf. n\ ”, a);

You can do the same way to read a set of data from a provided file. Declare a pointer and

open the correspondent file.

FILE *fi;

fi = fopen(“input.dat”,”r”);

Note that the option, r, represents reading. Then, read the data from the file using

fscanf command:

fscanf(fi, ”%lf”, &t);

C++ specifics

On the command prompt, use “iostream” for the header file. Commands, “cout” and “cin”,

are used for output and input, respectively. The following code is an example:

#include<iostream>

using namespace std;

int main(){

 int i;

 cout << “Enter an integer.” << endl;

 cin >> i;

 cout << “You entered “ << i << ”.” << endl;

}

The “endl” denotes the end of the line and the command feeds a new line.

When using an external file to input data, use “fstream” for the header file. To open a

file, use commands ifstream or ofstream for input or output, respectively. For instance,

#include<iostream>

#include<fstream>

using namespace std;

int main(){

 int i;

ifstream fin(“input.d”);

ofstream fout(“output.d”);

 fin >> i;

 fout << “You entered “ << i << ”.” << endl;

}

The input data is stored in the specified file, input.d. The comment and the data are

stored in the file named output.d.

