Comparison between micro-canonical and canonical ensembles and basic formulas for statistical mechanics

	Micro-canonical Ensemble	Canonical Ensemble
Macroscopic	N, E, V	N, T, V
Independent Variables		
Partition Functions	$W(N, E, V, \delta E) = \Omega(N, E, V) \delta E$	$Z_C = \sum_{l_N} e^{-\beta E_{l_N}}$
Probability	$f = rac{\delta(E-E_l)\delta E}{W}$	$f = \frac{1}{Z} e^{-\beta E_{l_N}}$
Distribution Functions		
Entropy	$S = k_B \log W$	$S = k_B (1 + T_{\frac{\partial}{\partial V}}) \log Z$
Helmholtz Free Energy	$F = E - k_B T \log W$	$F = -k_B T \log Z$
Gibbs Free Energy	$G = E - k_B (1 - V \frac{\partial}{\partial V}) \log W$	$G = -k_B(1 - V\frac{\partial}{\partial V})\log Z$
Internal Energy	E(given)	$E = -\frac{\partial}{\partial\beta} \log Z$
Temperature	$T = [k_B \frac{\partial}{\partial E} \log W]^{-1}$	T(given)
Pressure	$P = k_B T \frac{\partial}{\partial V} \log W$	$P = k_B T \frac{\partial}{\partial V} \log Z$
Chemical Potential	$\mu = -k_B T \frac{\partial}{\partial N} \log W$	$\mu = -k_B T \frac{\partial}{\partial N} \log Z$
Energy Fluctuation	$\Delta E = 0$	$(\Delta E)^2 = \frac{\partial^2}{\partial \beta^2} \log Z$

Micro-canonical Ensemble

The number of possibility: (Bosons)

- $M \longrightarrow$ total quantum number for each system, and
- $N \longrightarrow$ the total number of the independent systems:

$$W_M = \frac{(M+N-1)!}{M!(N-1)!}$$

The number of possibility: (Fermions)

 $M \longrightarrow$ total quantum number for each system, and

 $N \longrightarrow$ the total number of the independent systems:

$$W_M = \frac{N!}{M!(N-M)!}$$

The number of possibility: (Maxwell-Boltzmann) $M \longrightarrow$ total quantum number for each system, and $N \longrightarrow$ the total number of the independent systems:

$$W_M = N^M$$

Basic Relationships

Entropy:

$$S = k \log W_M$$

Temperature:

$$\frac{1}{T} = \frac{\partial S}{\partial E} = \frac{\partial S}{\partial M} \frac{\partial M}{\partial E}$$

Heat Capacity:

$$C = \frac{\partial E}{\partial T}$$

Partition Function for Canonical Ensemble:

Classical
$$Z = \frac{1}{\prod N! h^{dN}} \iint \exp(-\beta E) \, dq \, dp$$

Quantum $Z = \sum_{l} \exp(-\beta E_{N,l})$

where d is the spatial dimension of the system and $\beta = (kT)^{-1}$. Helmholtz Free Energy and the related relationships:

The Free Energy	$F = -kT \log Z$
The Entropy	$S = -\frac{\partial F}{\partial T}$
The Pressure	$P = -\frac{\partial F}{\partial V}$
The Internal Energy	$U = -T^2 \frac{\partial \left(\frac{F}{T}\right)}{\partial T}$

An Example for Obtaining a Partition Function

Consider the one-dimensional classical and quantum harmonic oscillator. The Hamiltonian is:

$$H = \frac{p^2}{2m} + \frac{m\omega^2 q^2}{2}$$

Using gaussian integral, $\int_{-\infty}^{\infty} \exp(-\alpha x^2) dx = \sqrt{\frac{\pi}{\alpha}}$, we obtain the classical partition function:

$$Z = \frac{1}{h} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \exp(-\beta H) dq dp = \frac{2\pi}{\beta h \omega} = \frac{2\pi kT}{h \omega}$$

Note that N = 1 and d = 1.

For the quantum partition function, the energy eigenvalues are expressed as

$$\varepsilon_n = \left(n + \frac{1}{2}\right)h\nu$$

Thus, we can calculate it as follows:

$$Z = \sum_{n} \exp\left[\beta\left(n+\frac{1}{2}\right)h\nu\right]$$
$$= \exp\left[\frac{-\beta h\nu}{2}\right]\sum_{n} \{\exp\left[-\beta h\nu\right]\}^{n}$$

Use

$$\sum_{n} = \{ \exp[-x] \}^{n} = \frac{1}{1 - \exp[-x]}$$

Then,

$$Z = \frac{\exp\left[\frac{-\beta h\nu}{2}\right]}{1 - \exp\left[\frac{-\beta h\nu}{2}\right]}$$
$$= \frac{1}{\exp\left[\frac{\beta h\nu}{2}\right] - \exp\left[\frac{-\beta h\nu}{2}\right]}$$
$$= \frac{1}{2\sinh\left(\frac{\beta h\nu}{2}\right)}$$