Question:

What is the time to stick together two objects due to only gravitational force?

Solution:

The gravitational force is an attractive force given as
$F=-G \frac{M m}{r^{2}}$
Assume that the small object moves toward the large one. The equation of motion is
$F=m \frac{d^{2} r}{d t^{2}}$
Thus,
$\sum F=-G \frac{M m}{r^{2}}=m \frac{d^{2} r}{d t^{2}}$
Multiply both sides by $d r / d t$, and integrate in terms of t.
$\int \frac{d r}{d t} \frac{d^{2} r}{d t^{2}} d t=-G M \int \frac{1}{r^{2}} \frac{d r}{d t} d t$
For the right hand side, $d t$ can be cancelled out. Then,
$\frac{1}{2}\left(\frac{d r}{d t}\right)^{2}=-G M \int \frac{1}{r^{2}} d r+C$
$\Rightarrow \frac{1}{2}\left(\frac{d r}{d t}\right)^{2}=\frac{G M}{r}+C$
The left hand side is a little tricky, but if you take derivative of $(1 / 2)(d r / d t)^{2}$ with respect to t, you will obtain $(d r / d t)\left(d^{2} r / d t^{2}\right)$. If R is infinite, the gravitational force and velocity will be zero. Thus, the constant, C, can also be zero. The above equation will be modified as follows:
$\frac{d r}{d t}=\sqrt{\frac{2 G M}{r}}$
$\Rightarrow \frac{d r}{d t} \sqrt{\frac{r}{2 G M}}=1$
Integrate both sides in terms of t.
$\Rightarrow t=\frac{2}{3} \sqrt{\frac{r^{3}}{2 G M}}+C^{\prime}$
When the two objects stick together $(r=0)$ as $t=0$, the constant, C^{\prime}, is zero. This equation can also describe how long it takes to collapse into a point for a celestial body.

Suppose there are two astronauts in space. Their masses are equally 200 kg . (They are wearing spacesuits.) They are separated by 10 m . If there is only gravitational force between them, how long will it take to get together?

Simply plug numbers in the above formula.
$t=\frac{2}{3} \sqrt{\frac{(10 \mathrm{~m})^{3}}{2 \times 6.67 \times 10^{-11} \mathrm{~m}^{3} /\left(\mathrm{kg} \mathrm{s}^{2}\right) \times 200 \mathrm{~kg}}}=129,067 \mathrm{~s}$
This is about 36 hours.

