Important properties of deuteron

We can categorize each state corresponding to the related conditions: The bound state,

States	${}^{1}S_{0}$	${}^{1}P_{1}$	${}^{1}D_{2}$	${}^{3}S_{1} + {}^{3}D_{1}$
Parity	+	—	+	+
Particle exchange	_	+	—	+
Interactions	nn, np, and pp	np	nn, np, and pp	np (deuteron)

 ${}^{3}S_{1} + {}^{3}D_{1}$, illustrates the deuteron. The deuteron has no excited state partly because of its small binding energy. S, P, D, correspond to the orbital angular momentum, L = 0, 1, 2. The number of left superscript expresses the spin multiplet, 2S + 1 and the right subscript is the total angular momentum, J.

The reason for mixed states of deuteron wave functions

The magnetic moment of proton is $\mu_p = +2.7927$ and that of neutron is $\mu_n = -1.91315$. The experimental deuteron magnetic dipole moment is $\mu_d = +0.857393$, which is not equal to $\mu_p + \mu_n$. The ground state of the deuteron has J = 1. Taking the correspondent states, ${}^{1}P_1$, ${}^{3}P_1$, ${}^{3}S_1$, and ${}^{3}D_1$. For the same parity, we can have two pairs, ${}^{1}P_1$ and ${}^{3}P_1$; ${}^{3}S_1$ and ${}^{3}D_1$. Only ${}^{3}S_1$ and ${}^{3}D_1$ gives the proper result with ${}^{3}S_1$ -state = 96% and ${}^{3}D_1$ -state = 4%. Due to this mixture, the potential energy additionally requires spatial description with a spherical tensor of rank 2:

$$V_T = \frac{3}{r^2}(\sigma_1 \cdot r)(\sigma_2 \cdot r) - \sigma_1 \sigma_2$$

The reason why the isospin must be zero for the deuteron

According to the deuteron potential, if the total isospin is $T = \pm 1$, only repulsive forces arise. Therefore only pn case (T = 0) makes the bound state (deuteron).

The other properties related to the wave functions

Each state corresponds to each wave function as follows: The asymptotic behaviors of the

State		Wave Function
${}^{3}S_{1}$	\longrightarrow	u(r)
${}^{3}D_{1}$	\longrightarrow	w(r)

wave functions are known as

$$u(r) \sim A_S \exp[-\gamma r]$$

 $w(r) \sim A_D \exp[-\gamma r] \left[1 + \frac{3}{\gamma r} + \frac{3}{(\gamma r)^2}\right]$

The D/S state ratio is given as

$$\eta \equiv \frac{A_D}{A_D}$$

This ratio measured accurately in the asymptotic region of the wave function, and is a good test of the existence and correctness of the description of the long-range NN force in terms of the pion exchange theory.

The (electric) quadrupole moment and radius of the deuteron are described as

$$Q_d = \frac{1}{20} \int_0^\infty dr r^2 w(r) [\sqrt{8}u(r) - w(r)] \qquad \text{Quadrupole Moment}$$
$$r_d = \frac{1}{2} \left\{ \int_0^\infty dr r^2 [u^2(r) + w^2(r)] \right\}^{\frac{1}{2}} \qquad \text{Deuteron Radius}$$

References

- [1] D. Griffths, Introduction to Elementary Particles. Wiley, 2008
- [2] G. V. Efimov, On bound states in quantum field theory (1996)
- [3] G. Dissertori, et. al. Quantum Chromodynamics.Oxford Univ. Press, 2009